
Lightweight
Fault-Tolerance

Lorenzo Alvisi

The University of Texas at Austin

2

Why Fault-Tolerance?

“A distributed system is one in which the
failure of a computer you didn’t even know
existed can render your own computer
unusable.”

Leslie Lamport, May 1987

3

Fault-Tolerance:
The Good-Old Days

Target:
• life-critical applications

Primary concern:
• tolerate arbitrary failures

Secondary concerns:
• performance

• resources

• transparency

4

Towards Lightweight
Fault Tolerance

Target:
• less critical applications

Primary concerns:
• few dedicated resources

• negligible impact on performance

• fast recovery

• tolerance to common failures

• application-transparency

Secondary concerns:
• Byzantine fault-tolerance

• continuous availability

5

Rollback Recovery

• Log information on stable storage during failure
free executions

• Use that information to recover after a failure

p

Orphan: process that depends on an unrecoverable state of a
failed process

Piecewise determinism: all nondeterministic events can be
identified and logged in the event’s determinant

q
m

6

Outline of the Talk

• Flavors of Rollback Recovery

• Egida: A Toolkit for Lightweight Fault-Tolerance

• Challenges

7

Distributed Checkpointing at a Glance

Communication-
induced

+ Consistent states
+ Autonomy
+ Scalability

Coordinated

+ Consistent states
+ Good performance
+ Garbage Collection
- Scalability

Independent

+ Simplicity
+ Autonomy
+ Scalability
- Domino effect

8

Message Logging at a Glance

Pessimistic

+ No orphans
+ Easy recovery
- Blocks

Optimistic

+ Non-blocking
- Orphans
- Complex recovery

Causal

+ Non-blocking
+ No orphans
- Complex recovery

p1

m1

m2

p2

p3

m3

9

Rollback Recovery Protocols:
A Success Story?

• Over 300 papers in the area

• Relatively few implementations

• Why?
– Performance issues not understood

– Integrating recovery protocols with applications non trivial

– One size doesn’t fit all

10

Egida

• Transparent
– seamless integration with applications

• Extensible
– can easily handle new sources of non-determinism
– can easily include new protocols

• Flexible
– allows to select best protocol for application

• Smart
– don’t want to implement 300 protocols...

• Powerful
– a “microscope” to understand rollback recovery

A toolkit for supporting rollback recovery

11

The Unifying Theme

• All rollback recovery protocols enforce the no-orphans
consistency condition

• The challenge is handling non-determinism
– A process may execute non-deterministic events

– A process may interact with other processes or with the
environment and generate dependencies on these events

• Characterize a protocol according to how it handles non-
determinism
– Identify relevant events

– Specify which actions to take when event occurs

12

Relevant events

• Non-deterministic events
– Ex: message delivery, file read, clock read, lock acquire

• Failure-detection events
– time-out, message delivery

• Internal dependency-generating events
– Ex: message send, file write, lock release

• External dependency generating events
– output to printer or screen, file write

• Checkpointing events
– Ex: timeout, explicit instruction, message delivery

13

The Architecture

• Event handlers invoked on relevant events

• Library of modules
– implement core functionalities

–(checkpointing, creating determinants, logging, piggybacking, detecting
orphans, restarting a faulty process, etc.)

– provide basic services
–(stable storage, failure detection, etc)

– single interface; multiple implementations

• Use a specification language to select desired modules and
corresponding implementations

• Synthesize protocol automatically from specification

14

An Example of
Protocol Specification

Causal Logging

/* non-deterministic events statement */

receive:
determinant : {source, ssn, dest,

desn}
Log : determinant on volatile

memory of processes

/* internal dependency-generating events
statement */

send:
 Piggyback : determinants
 Log : message on volatile memory

of self

/* external dependency-generating events
statement*/

send:
Output Commit : determinants

Implementation : independent

/* checkpoint statement */

Checkpoint : independent, asynchronous
on NFS disk

Implementation : incremental

Scheduling policy : periodic

15

Integration with MPI

MPICH :
• 2-layered architecture

• upper layer exports MPI
functions to application

• lower layer performs data
transfer using platform
specific libraries (e.g. P4)

Modifications to MPICH:
• In upper layer, replace calls to

P4 with corresponding calls to
Egida API

Modification to P4:
• Handle socket-level errors

• Allow recovering process to
set up connections with
correct processes

Modifications to Applications:
 NONE

Application

MPICH

P4

Egida

16

Status

• Works for Solaris

• Almost works for Linux

• Used at UCSD, Cornell

*

17

What did we do with it?

Protocols for fast recovery
• First comprehensive performance of recovery for RR

protocols
• New protocols that provide:

– Fast failure-free execution
– Fast recovery
– Fault containment

Analysis of CIC protocols
• Consistent states
• Autonomy
• Scalability
• No useless checkpoints

Really?

18

More Goodies

Fault-Tolerant JVM
• capture non-determinism at the virtual machine interface

Fault-Tolerant TCP
• Mask failure of server
• Don’t change TCP
• Don’t change client

Secure Recovery Protocols
• what if the information used during recovery is tampered with?

19

Challenges

• Transparency

• Scalability

